If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.4x^2-60x+300=0
a = 2.4; b = -60; c = +300;
Δ = b2-4ac
Δ = -602-4·2.4·300
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-12\sqrt{5}}{2*2.4}=\frac{60-12\sqrt{5}}{4.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+12\sqrt{5}}{2*2.4}=\frac{60+12\sqrt{5}}{4.8} $
| 3(x+2)-4(2x+4)=28 | | -(61/12)=b-(4/3) | | x=-0.25(7.4-2.4)(7.4-9.2) | | x=(-0.25(7.4-2.4)(7.4-9.2)) | | 3x+2(x–4)=9x–2(x+7)+2(3–x) | | 3x+2(x–4)=9x–2(x+7)+2(3–x | | 2x-3/4=3x | | 8f=4f➖24 | | 15=d/2 | | 15=d÷2 | | 2x+6=26−3x | | 1/8*x2=8 | | Y+50=3x | | x/10=12.6 | | 18+(7x-5)-6-(1-x)=6-(36+x) | | 2x-(-7)+3x-(1-x)=-9+2x | | (x+3)*(x+3)+(x-1)*(x-1)= | | 4y-105=90 | | x=(x+3)2+(x-1)2 | | 10x2+42x+44=0 | | 12y-72=0 | | X=4629.25-y | | 2x-84=192 | | 2^(2x-1)-9*2^x+4=0 | | 0,5x+4=-2,5x–5 | | 2500=(x-0.06x)/0.4 | | 5x-12=4x+5/6 | | 1000+0.06x=x | | 2x+1/2+10x=-3.5 | | Z^2-Z(1-i)-i=0 | | (x-1)(x+3)(x-6)+96=0 | | 12-(2x3+1)= |